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A theoretical study is made of continuously stratified flow of large depth over
topography when small periodic vertical fluctuations are present in the Brunt–Väisälä
frequency, the background flow conditions being otherwise uniform. It is known from
Phillips (1968) that, owing to nonlinear interactions with such fluctuations, internal
gravity waves with vertical wavelength twice that of the background variations
become trapped along the vertical, suggesting a waveguide-like behaviour. Using
the asymptotic theory of Kantzios & Akylas (1993), we explore the role that this
interaction-trapping mechanism plays in the generation of finite-amplitude long-wave
disturbances near the hydrostatic limit. As a result of vertical trapping, a resonance
phenomenon occurs and the linear hydrostatic response grows unbounded when the
flow speed coincides with the long-wave speed of a free propagation mode that
is trapped close to the ground. Near this critical flow speed, according to weakly
nonlinear analysis, the wave evolution along the streamwise direction is governed by
a forced extended Korteweg–de Vries equation, which predicts upstream-propagating
solitary waves and bores similar to those obtained in resonant stratified flow of finite
depth. The finite-amplitude response is then studied numerically and in some cases
features strong upstream influence in the form of vertically trapped solitary waves and
bores. On the other hand, incipient wave breaking is often encountered during the
evolution of the nonlinear resonant response, and this flow feature, which is beyond
the reach of weakly nonlinear theory, arises at topography amplitudes significantly
below the critical value for overturning predicted by the classical model of Long
(1953) for uniformly stratified steady flow.

1. Introduction
It was pointed out by Phillips (1968) that internal gravity waves in stratified

fluids of large depth can be trapped in the vertical direction when small periodic
vertical fluctuations are present in the background flow velocity and/or Brunt–
Väisälä frequency. He considered in particular two oblique gravity wavetrains with
the same horizontal but opposite vertical wavenumber components, and studied
their interaction in nearly uniform background flow having small sinusoidal vertical
variations of wavenumber twice the internal-wave vertical wavenumber. As a result
of this special type of resonant-triad interaction, the amplitudes of the two gravity
wavetrains drop off exponentially in the vertical direction over a lengthscale that is
long compared with their vertical wavelength, but the mean-flow variations remain
unaffected. Internal wave disturbances under these conditions may thus be trapped
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close to the ground or ocean surface, their energy being essentially confined in a finite
vertical region, suggesting a waveguide-like behaviour.

In the present study, we explore possible implications of this interaction-trapping
mechanism for finite-amplitude internal wave disturbances generated by stratified flow
of large depth over topography near the hydrostatic limit. This flow configuration is
relevant in a variety of atmospheric and meteorological applications and has been
the subject of numerous prior investigations (see, for example, Baines (1995) for a
comprehensive survey). It is now well understood that the nature of the wave response
can change significantly depending on whether the background flow conditions act as
a waveguide of gravity waves. In a stratified fluid layer of finite depth, for instance,
where energy is confined in the vertical direction, there is strong upstream influence, in
the form of upstream-propagating solitary waves, when the flow speed is close to one
of the long-wave speeds associated with the linear modes of propagation in the layer
(Grimshaw & Smyth 1986). On the other hand, no such resonance phenomena occur
in uniformly stratified (constant Brunt–Väisälä frequency) flow of large depth over
topography, since energy can be freely radiated upwards under these flow conditions
(Prasad, Ramirez & Akylas 1996).

In light of the trapping mechanism brought out by Phillips (1968), however, it
is conceivable that small periodic variations in the background flow could alter the
overall characteristics of uniformly stratified flow of large depth over topography. This
issue is addressed here in the context of the asymptotic theory developed in Kantzios
& Akylas (1993, hereinafter referred to as KA) for infinitely deep, nonlinear stratified
flow near the hydrostatic limit (extended topography). In this flow geometry and under
uniform background conditions (constant flow speed and Brunt–Väisälä frequency),
the wave response takes the form of a slowly modulated columnar disturbance with
fixed vertical wavenumber. To describe the dynamics of the flow, KA derived a pair
of amplitude-evolution equations for this columnar disturbance, allowing for slight
variations in the background velocity and density profiles. A special steady-state
solution of these evolution equations for uniform background conditions corresponds
to the celebrated Long’s steady-flow state that was first obtained directly from the
full Euler equations in steady form under the assumption of no upstream influence
(Dubreil-Jacotin 1935; Long 1953). According to the theory of KA, Long’s solution
turns out to be linearly unstable at topography amplitudes well below the critical
steady-state amplitude for overturning, but there is no evidence of upstream influence
in the nonlinear transient flow (Prasad et al. 1996). This is in sharp contrast to the
analogous finite-depth problem where, as already remarked, strong upstream influence
in the form of solitary waves is observed under resonant-flow conditions (Grimshaw
& Smyth 1986; Grimshaw & Yi 1991).

Motivated by the findings of Phillips (1968), here we revisit the generation of
gravity waves by stratified flow of large depth over finite-amplitude topography,
assuming that the background stratification is nearly uniform such that the Brunt–
Väisälä frequency features small periodic vertical variations. This seemingly minor
departure from uniform background flow conditions has a rather dramatic effect:
owing to trapping of gravity waves in the vertical direction, infinitely deep stratified
flow behaves, in many respects, like near-resonant flow in a waveguide. Specifically, in
the absence of topography, there is a free mode that propagates along the streamwise
direction but remains trapped close to the ground. When the flow speed coincides
with the long-wave speed of this trapped mode, the linear forced response becomes
unbounded, necessitating the consideration of nonlinear effects. Based on weakly
nonlinear analysis, near this resonance, the wave evolution along the streamwise
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direction is governed by a forced extended Korteweg–de Vries (eKdV) equation which
combines cubic nonlinearity with third-order dispersion. At near-critical flow speeds,
the weakly nonlinear response features upstream-propagating solitary waves and
bores, similar to those found in resonant flow of finite depth (Grimshaw & Smyth
1986; Grimshaw, Chan & Chow 2002). These predictions are qualitatively consistent
with numerical solutions of the fully nonlinear equations of KA under certain flow
conditions. During the evolution of the nonlinear resonant response, however, we
encounter wave breaking quite often, even when the topography amplitude is well
below the critical value for overturning predicted by Long’s model, and this flow
feature cannot be captured by weakly nonlinear theory.

There is evidence from field observations that the Brunt–Väisälä frequency in the
upper troposphere and lower stratosphere often features nearly periodic fluctuations
so wave trapping could play a part in the propagation and breakdown of atmospheric
gravity waves in those regions.

2. Review of asymptotic theory
We begin with a brief description of the finite-amplitude long-wave asymptotic

theory of KA upon which the present study is based.
Consider two-dimensional flow of incompressible stratified fluid of unbounded

vertical extent past a smooth obstacle of peak height h∗ and characteristic length L∗.
The fluid velocity and Brunt–Väisälä frequency far upstream of the topography have
characteristic values U∗ and N∗, respectively. Denoting by g the acceleration due to
gravity, the flow is characterized by the Boussinesq parameter β = N∗U∗/g, which is
a measure of stratification, the nonlinearity parameter ε = N∗h∗/U∗, which controls
finite-amplitude effects, and the long-wave parameter µ = U∗/(N∗L∗), a measure of
dispersive effects. In terms of these three parameters, the theory of KA applies to
nearly hydrostatic (µ � 1), nonlinear (ε = O(1)), Boussinesq flow (β → 0) under nearly
uniform upstream flow conditions.

For uniform background flow velocity U∗ and Brunt–Väisälä frequency N∗,
according to Long’s model (Long 1953), the hydrostatic (µ → 0) finite-amplitude
steady-flow response is a columnar disturbance that consists of a single mode with
vertical wavenumber N∗/U∗ and has slowly varying amplitude in the streamwise
direction. Motivated by this observation, KA pose the transient-flow response as
a temporally and spatially modulated columnar disturbance with the same vertical
wavenumber as Long’s steady state, and derive a pair of evolution equations for
the disturbance envelope, taking into account weak transient and dispersive (non-
hydrostatic) effects as well as the presence of small variations in the background flow.
As expected, these amplitude-evolution equations admit Long’s state as a particular
steady-state solution, and the theory of KA may thus be viewed as a generalization
of Long’s model near the hydrostatic limit.

More specifically, using dimensionless variables with L∗/U∗ as the timescale and
L∗ and U∗/N∗, respectively, as the lengthscales along the streamwise (-x) and vertical
(-y) directions, the streamfunction ψ(x, y; Y, T ) is written in the form

ψ = y +(Aeiy +c.c.) + O(µ2), (2.1)

where c.c. denotes the complex conjugate. Consistent with the remarks made above,
to leading order, the flow is the superposition of a uniform stream and a modulated
columnar disturbance, the complex envelope A(x, y, T ) = a +ib of which depends on
the streamwise coordinate x, the stretched vertical coordinate Y = ν2y and the slow
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time T = ν2t , with ν = αµ, α = O(1). Far upstream (x → −∞), where no disturbance is
present, the background flow velocity and Brunt–Väisälä frequency are nearly uniform
with O(ν2) variations in the vertical direction:

ψ = y + ν2r(y) (x → −∞), (2.2a)

N2(y) = 1 + ν2q(y) (x → −∞). (2.2b)

According to (2.1), the flow is quasi-steady and the background-flow conditions (2.2)
depart only slightly from those for which Long’s steady-flow model applies.
This suggests replacing the vertical coordinate y by ψ , exploiting the fact that,
via this change of variable, the governing equations can be cast in linear form when
Long’s model is valid; the problem at hand may thus be tackled by perturbation
methods. Of course, it should be kept in mind that the mapping y = y(ψ; A) defined
by (2.1) is unique provided flow reversal (wave breaking) does not occur, and this
leads to the restriction

a2 + b2 < 1
4

(2.3)

on the wave amplitudes a and b.
Taking this approach, KA arrived at the following pair of coupled integral–

differential evolution equations for the disturbance amplitudes a and b:∫ x

−∞
dx ′K11a

′
T +

∫ x

−∞
dx ′K12b

′
T − 1

2
α2axx + bY + N1 = 0, (2.4a)∫ x

−∞
dx ′K21a

′
T +

∫ x

−∞
dx ′K22b

′
T − 1

2
α2bxx − aY − N2 = 0. (2.4b)

The kernels K11, . . . , K22 that enter the time-evolution terms above depend on a and
b and are defined by

K11(x, x ′) =
1

8π

∫ 2π

0

dψ ya(y
′
a +(y ′y ′

a)ψ − yy ′
aψ ), (2.5a)

K12(x, x ′) =
1

8π

∫ 2π

0

dψ ya(y
′
b + (y ′y ′

b)ψ − yy ′
bψ ), (2.5b)

K21(x, x ′) =
1

8π

∫ 2π

0

dψ yb(y
′
a + (y ′y ′

a)ψ − yy ′
aψ ), (2.5c)

K22(x, x ′) =
1

8π

∫ 2π

0

dψ yb(y
′
b + (y ′y ′

b)ψ − yy ′
bψ ), (2.5d)

with the notation that primed variables are functions of x ′. The terms N1 and N2 in
(2.4) represent the effects brought about by the presence of small variations in the
upstream flow conditions (2.2) and are given by

N1 =
1

4π

∫ 2π

0

dy cos y
{
[r ′′ + r]ψy +(ψ − y)(r ′ − q)|ψ

}
, (2.6a)

N2 =
1

4π

∫ 2π

0

dy sin y
{
[r ′′ + r]ψy + (ψ − y)(r ′ − q)|ψ

}
. (2.6b)

Note that the only possible sources of nonlinear terms in the evolution equations (2.4)
are the kernels (2.5) that control transient effects and the terms N1 and N2 above;
the steady-flow response under entirely uniform background flow conditions is thus
governed by a linear equation system, consistent with Long’s model.
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The specification of the problem is completed by the boundary condition

a cos εf − b sin εf = − 1
2
εf, (Y = 0); (2.7)

in view of (2.1), this ensures that the topography profile y = εf (x) is a streamline.
In the present study, we consider flow past the topographic profile known as the

algebraic mountain (or ‘Witch of Agnesi’), given by

f (x) =
1

1 + x2
. (2.8)

As in Prasad et al. (1996), we also find it convenient here to work with the system
of governing equations (2.4) after differentiating once with respect to x:

Kc
11aT +Kc

12bT +

∫ x

−∞
dx ′(K11xa

′
T +K12xb

′
T

)
− 1

2
α2axxx + bxY + N1x = 0, (2.9a)

Kc
21aT +Kc

22bT +

∫ x

−∞
dx ′(K21xa

′
T +K22xb

′
T

)
− 1

2
α2bxxx − axY − N2x = 0, (2.9b)

where Kc
ij =Kij (x, x). The hydrostatic limit of these equations, used by Prasad et al.

(1996), is obtained by setting α = 0.
Finally, the upstream flow conditions (2.2) are specified; for simplicity, it is assumed

that no shear is present (r ≡ 0), but the Brunt–Väisälä frequency features sinusoidal
fluctuations with vertical wavenumber twice that of the induced columnar disturbance
(2.1):

q(y) = q1 sin 2y + q2 cos 2y. (2.10)

We remark that this is precisely the resonance condition found by Phillips (1968)
for the gravity-wave disturbance (2.1) to become trapped in the vertical direction
owing to nonlinear interactions with periodic variations in the background flow. In
the context of the evolution equations (2.9), as pointed out in KA, background flow
variations with this particular period can give rise to wave trapping because, in the
small-amplitude limit, the interaction terms N1 and N2 are linear in the disturbance
amplitudes a and b; for fluctuations of any other periodicity, N1 and N2 are nonlinear
in a and b so interaction trapping is not possible.

3. Linear resonant response
It is instructive to study first the effects of the buoyancy fluctuations (2.10) on the

wave response at small topographic amplitudes, ε � 1. In this limit, the disturbance
amplitudes a and b are small and the terms N1 and N2 in (2.6), that account for the
background-flow variations, have the expansions

N1 = − 1
4
q2a + 1

4
q1b + 2q2a

3 − 3q1a
2b − q1b

3 + . . . , (3.1a)

N2 = − 1
4
q1a − 1

4
q2b + q1a

3 + 3q1ab2 + 2q2b
3 + . . . . (3.1b)

Likewise, the kernels K11, . . . , K22 in (2.5), that control the time evolution of the
disturbance amplitudes, can be expanded as follows:

K11 = 1 − 3(a2 + a′2) − (b2 + b′2) + 8(aa′ + bb′) + . . . , (3.2a)

K12 = −2(ab + a′b′) − 8(a′b − ab′) + . . . , (3.2b)

K21 = −2(ab + a′b′) + 8(a′b − ab′) + . . . , (3.2c)

K22 = 1 − (a2 + a′2) − 3(b2 + b′2) + 8(aa′ + bb′) + . . . . (3.2d)
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In view of (3.1) and (3.2), the linearized versions of the evolution equations (2.9)
are

aT + bxY − 1
2
α2axxx − 1

4
q2ax + 1

4
q1bx = 0, (3.3a)

bT − axY − 1
2
α2bxxx + 1

4
q1ax + 1

4
q2bx = 0, (3.3b)

and the boundary condition (2.7) reduces to

a = − 1
2
εf (x) (Y = 0). (3.4)

In the absence of forcing (ε =0), it follows from (3.3) and (3.4) that for q1 > 0, there
is a free mode which propagates along the streamwise direction but remains trapped
close to the ground (Y = 0):

a = 0, b = exp
(
− 1

4
q1Y

)
exp{i(kx − ωT )}, (3.5)

and satisfies the linear dispersion relation

ω = 1
4
q2k + 1

2
α2k3. (3.6)

It is important to note that, according to (3.6), the long-wave speed associated with
this trapped mode is c0 = q2/4 and is equal to the corresponding group velocity. From
prior experiences (Akylas 1987), it is expected that this long-wave speed will then
define a resonant-flow condition in the forced problem, analogous to that identified by
Grimshaw & Yi (1991) in uniformly stratified flow in a channel of finite depth when
the flow speed coincides with the phase speed of a hydrostatic mode of propagation.
As verified below, this condition also obtains here, and the resonant flow speed which
matches the long-wave speed of the trapped mode (3.5) is given, in dimensional
variables, by

Ucrit = U∗
(
1 − 1

4
µ2q2

)
, (3.7)

where, in view of (2.10), U∗ is related to the vertical wavelength of the background-flow
variations λ∗ via

U∗ =
λ∗N∗

π
, (3.8)

N∗ being the mean Brunt–Väisälä frequency. Moreover, according to (3.5), dis-
turbances are trapped in the vertical direction over a distance O(λ∗/µ

2q1).
We now proceed to verify that, at resonant conditions, the linear hydrostatic

response does not reach steady state, as was found by Grimshaw & Yi (1991) in the
analogous finite-depth problem. In the non-dimensional formulation adopted here, for
the purpose of studying the response near the critical flow speed (3.7), it is convenient
to consider a reference frame moving with speed c, say,

ξ = x − cT , (3.9)

and take the topography profile to be stationary in that frame, y = εf (ξ ); the condition
for resonant flow then is c = c0 = q2/4. Implementing (3.9), the amplitude equations
(3.3) in the hydrostatic limit (α → 0) become

aT − (c + c0)aξ + bξY + 1
4
q1bξ = 0, (3.10a)

bT + (c + c0)bξ − aξY + 1
4
q1bξ = 0, (3.10b)

while the boundary condition (3.4) reads

a = − 1
2
εf (ξ ). (3.11)
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The steady-state solution of (3.10) that satisfies (3.11) and remains bounded as
Y → ∞, is

a = − 1
2
εf (ξ )e−sY , (3.12a)

b = 1
2
εf (ξ ) c + c0

s − 1
4
q1

e−sY , (3.12b)

where

s =
(

1
16

(
q2

1 + q2
2

)
− c2

)1/2
.

It is important to note that the steady-state solution for b is singular if s = q1/4
(for c �= −c0), which is the case when c = c0 = q2/4 and q1 > 0; this is precisely the
condition for resonant flow noted earlier, that occurs when the flow speed matches
the long-wave speed of the trapped mode (3.5).

At resonant conditions (c = c0 = q2/4, q1 > 0), it turns out that (3.12b) is replaced
by

b = 1
4
εf (ξ )

(
q1Tfξ − q2Yf

)
exp

(
− 1

4
q1Y

)
, (3.13)

which reveals that b, in fact, grows linearly with T . It is worth noting that, in the
analogous finite-depth problem, the linear hydrostatic response at resonance was also
found to grow linearly with time (Grimshaw & Smyth 1986; Grimshaw & Yi 1991).
This provides further evidence that, as a result of the interaction-trapping mechanism
of Phillips (1968), vertically unbounded stratified flow can act as a waveguide when
small periodic variations are present in the buoyancy frequency. Of course, as the
linear resonant response grows unbounded, nonlinear effects will eventually become
important close to resonance. We take up this issue in what follows.

4. Weakly nonlinear model
The theory of KA, outlined in § 2, is valid for ε =O(1) and can therefore be used

to study the nonlinear flow response near resonance. Owing to the complexity of
the governing equations (2.9), we must resort to a fully numerical approach for this
purpose (see § 5). Before turning to a discussion of the nonlinear response, however,
we shall derive a simplified evolution equation for small-amplitude disturbances. This
weakly nonlinear model, although of limited validity, brings out more clearly the
waveguide-like behaviour of vertically unbounded flow in the presence of periodic
vertical variations.

Starting from the nonlinear amplitude equations (2.9) and the boundary condition
(2.7) of the KA theory, we shall use a weakly nonlinear long-wave expansion
(ε � 1, α � 1) to obtain a simplified evolution equation for nearly resonant flow
(c ≈ c0 = q2/4). The development here parallels that of Grimshaw & Smyth (1986)
for resonant flow over topography in a channel of finite depth and only the salient
features are described.

In preparation for the ensuing analysis, we adopt again the reference frame moving
with speed c according to (3.9) in which the topography is taken to be stationary.
Making use of the integration properties of the kernels K11, . . . , K22 described in
Appendix A, the evolution equations (2.9) then transform to

Kc
11aT + Kc

12bT +

∫ ξ

−∞
dξ ′(K11ξ a

′
T + K12ξ b

′
T

)
− caξ − 1

2
α2aξξξ + bξY + N1ξ = 0, (4.1a)

Kc
21aT + Kc

22bT +

∫ ξ

−∞
dξ ′(K21ξ a

′
T + K22ξ b

′
T

)
− cbξ − 1

2
α2bξξξ − aξY − N2ξ = 0. (4.1b)

Moreover, as before, the topography profile is taken to be y = εf (ξ ).
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Taking q1 > 0, close to resonance, we write

c = 1
4
q2 − α2c1, c1 = O(1); (4.2)

recalling (3.7), the sign of the parameter c1 determines whether the flow is supercritical
(c1 > 0) or subcritical (c1 < 0). In the transcritical regime it turns out that the
disturbance evolves on the slow time scale τ = α2T , and the appropriate expansions
for a and b are

a =α5/2a2 + . . . , b = α1/2(b0 + α2b2 + . . .). (4.3)

Furthermore, nonlinear and dispersive effects balance each other if ε = α5/2, and the
boundary condition (2.7) may therefore be written as

a = − 1
2
α5/2f (ξ ) + . . . (Y =0). (4.4)

We remark that, according to (4.3), the resonant response amplitude is O(α1/2) and
hence much larger than the topography peak amplitude.

Inserting expansions (4.3) in the governing equations (4.1) and making use of
the weakly nonlinear expressions (3.1) and (3.2) for N1 and N2 and the kernels
K11, . . . , K22, the solution at the lowest order is

b0 = B(ξ, τ ) exp
(
− 1

4
q1Y

)
, (4.5)

B being an as yet undetermined amplitude. Proceeding to O(α5/2), it follows from
(4.1b), making use of (3.1b) and (4.2), that a2 satisfies the inhomogeneous equation(

a2Y − 1
4
q1a2

)
ξ

=
(
Bτ + c1Bξ − 1

2
Bξξξ

)
exp

(
− 1

4
q1Y

)
− 2q2(B3)ξ exp

(
− 3

4
q1Y

)
, (4.6)

which, in view of (4.4), must be solved subject to the boundary condition

a2 = − 1
2
f (ξ ) (Y =0). (4.7)

For the above boundary-value problem to have a solution that remains bounded as
Y → ∞, the inhomogeneous terms in (4.6) and (4.7) must satisfy a compatibility
condition that is readily obtained by multiplying (4.6) by its adjoint solution,
exp(−q1Y/4), and integrating over Y from 0 to ∞. Making use of the boundedness of
a2 as Y → ∞ and the boundary condition (4.7), we then find that B must satisfy the
amplitude equation

Bτ + c1Bξ − 1
2
Bξξξ − 3q2B2Bξ = 1

4
q1fξ . (4.8)

This is a particular version of the forced extended Korteweg–de Vries (eKdV)
equation, in which third-order dispersive effects are balanced by a cubic nonlinearity.
The more general form of this equation, which includes both quadratic and cubic
nonlinearities, has been employed previously in studies of internal wave propagation
in two-layer flows of finite depth (Kakutani & Yamasaki 1978; Miles 1979; Helfrich
& Melville 1986). In the absence of forcing (f = 0), the eKdV equation has been
shown by Kakutani & Yamasaki (1978) to admit solitary-wave and shock solutions.
Grimshaw et al. (2002) have recently undertaken a comprehensive study of the
general forced eKdV equation and interpreted the response in terms of a hydraulic
approximation. It turns out that there is a rich variety of responses, featuring upstream
influence in the form of solitary waves and bores.

The fully nonlinear computations in § 5 below indicate that the weakly nonlinear
equation (4.8) is in fact quite restricted because, among other reasons, it cannot predict
the onset of wave breaking. Accordingly, we shall present numerical solutions of (4.8)
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Figure 1. The wave amplitude B(ξ ) at τ = 100 for supercritical flow with c1 = 0.6 and

q1 = q2 =
√

2, illustrating the formation of upstream solitary waves.

only for a limited set of parameters, merely to illustrate that here also upstream
influence is possible near resonant flow conditions.

The numerical method of solution of (4.8) is based on the Lax–Wendroff algorithm
and is similar to that employed in § 5 for the full equations (see Appendix B).
Specifically, the amplitude B is advanced from the nth to the (n + 1)th time step
according to

B(n+1) = B(n) + B(n)
τ 	τ + 1

2
B(n)

ττ 	τ 2,

where B(n)
τ is evaluated using (4.8), and the term involving B(n)

ττ , which can be expressed
in terms of spatial derivatives, provides the numerical damping necessary to maintain
stability. In the present implementation, only linear terms in the expression for B(n)

ττ are
retained so that the temporal accuracy is first- rather than second-order. The spatial
derivatives are evaluated using centred second-order differences on a uniform grid,
the spacing of which is set to 	ξ = 0.05. The method was validated by comparison
with the results of Grimshaw et al. (2002) for the general forced eKdV equation.

We consider first supercritical flow with c1 = 0.6 and q1 = q2 =
√

2. The solution at
τ = 100 is shown in figure 1. The upstream flow consists of a series of upstream-
propagating solitary waves. Three such waves are visible in figure 1 and it is evident
that a fourth solitary wave is in the process of forming above the obstacle, which
is centred at ξ = 0. An undulating trough occurs immediately downstream followed
by a dispersive wavetrain. The solitary waves are of relatively large amplitude and
dominate the unsteady response.

Next, we consider flows with the stratification parameters q1 =
√

2, q2 = −
√

2. The
wave amplitude B is shown in figure 2(a) at τ =100 for subcritical flow with c1 = −0.5.
We observe that a monotonic bore forms upstream of the obstacle. The downstream
response consists of a uniform trough followed by a modulated lee wave of relatively
large magnitude. The nature of the bore is sensitive to the value of c1: when c1 is
decreased from −0.5 to −0.75, the monotonic bore becomes undular as shown in
figure 2(b). The undular bore is weaker than its monotonic counterpart, while the
strength of the lee wave field has increased. Both types of upstream-bore response
are qualitatively similar to those of Grimshaw et al. (2002).

Finally, we examine a flow with q1 = q2 =
√

2 and c1 = −0.5. The response at τ = 110
is illustrated in figure 3. An oscillatory disturbance of decreasing amplitude propagates
upstream. The downstream response consists of an irregular oscillatory wavetrain and
can assume magnitudes considerably larger than that of the upstream wave.
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Figure 3. The wave amplitude B(ξ ) at τ = 110 for subcritical flow with c1 = −0.5 and

q1 = q2 =
√

2.

The preceding weakly nonlinear long-wave analysis illustrates the profound effect
that periodic fluctuations in the background density distribution can have on the
propagation of internal waves in a fluid of infinite depth under resonant flow
conditions. In particular, these fluctuations cause trapping of the response close
to the ground, resulting in flow behaviour entirely analogous to that of a confined
system. The implications of this mechanism for the nonlinear flow response are
explored below.

5. Nonlinear response
The evolution equation (4.8) describes the generation of very long (α � 1)

disturbances in the small-amplitude limit (ε � 1). It is therefore clear that the onset
of breaking, which occurs for finite-amplitude disturbances when condition (2.3) is
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2 at supercritical speed
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first violated somewhere in the flow field, cannot be predicted using (4.8). In order
to ascertain the possibility of overturning during the transient evolution of a fully
nonlinear (ε = O(1)) disturbance, it is necessary to solve the system of equations
(4.1a, b) numerically. The procedure adopted for this purpose is based on the Lax–
Wendroff algorithm and described in Appendix B.

Our interest here is centred on the transient response to the introduction of the
obstacle. In order to avoid numerical difficulties associated with an impulsive start-up
as well as to mimic the manner in which natural and laboratory flows are established,
we assume that the obstacle is switched on gradually:

f (ξ, T ) =
1 − e−40T

1 + ξ 2
. (5.1)

According to (5.1), the obstacle attains 99.9% of its maximum amplitude before
T =0.175.

For uniformly stratified hydrostatic flow, Prasad et al. (1996) derived a global
energy balance for the wave disturbance which proved useful in interpreting their
numerical results. The modifications required to account for the effects of dispersion
and varying background stratification are straightforward, and the energy balance
again takes the form

d

dt
KE+

d

dt
PE= R,

where the two terms on the left-hand side represent the rates of change of kinetic and
potential energy, respectively, while R stands for the rate of work done by the force
responsible for establishing the flow. In discussing the nonlinear flow response, we
shall monitor the rate of change of kinetic energy, which can be expressed in terms
of the disturbance amplitudes a and b as

K ≡ d

dt
KE=

d

dT

∫ ∞

−∞
dξ

∫ ∞

0

dY (a2 + b2).

As indicated previously, the forced eKdV equation has recently been shown to
possess a large variety of solutions (Grimshaw et al. 2002). It may then be expected
that the present evolution equations (4.1a, b) are likely to yield a comparably
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Figure 5. The wave amplitudes (a) b(ξ, Y ) and (b) a(ξ, Y ) at T = 33.75 for the flow
parameters in figure 4.

rich solution set. However, owing to the computational expense associated with
determining these solutions numerically, an exhaustive study will not be attempted.
Instead, we present a few illustrative examples to demonstrate the behaviour of
large-amplitude waves that cannot be described by the eKdV equation.

In solving the equation system (4.1a, b) subject to the boundary condition (2.7), we
may, without loss of generality, set α = 1 since α can be eliminated from 4.1(a, b)
via the rescalings Y → α2Y , T → α2T , c → c/α2 and (q1, q2) → (q1, q2)/α

2. The flow
conditions are thus specified by the nonlinear parameter ε, the flow speed c and the
stratification parameters q1 and q2. As in the weakly nonlinear problem examined in
§ 4, we set the value of c by prescribing c1 in (4.2).
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Figure 6. The rate of change of kinetic energy as a function of T for flow past topography

of amplitude ε = 0.1 and stratification parameters q1 = q2 = 4
√

2 at supercritical speed c1 = 1.

We consider first the supercritical-flow case c1 = 1 with q1 = −4
√

2, q2 = 4
√

2 for
the moderately small value of ε =0.1. Since q1 is negative, it follows from (3.12a, b)
that no resonance is possible and, on the basis of linear theory, a steady state should
be achieved. We also recall that the forced eKdV equation is not relevant to this
non-resonant flow regime. The evolution of the rate of change of kinetic energy K of
the nonlinear response is shown as a function of T in figure 4. Following the initial
transient, we observe that K approaches zero at large T , indicating that a steady state
is indeed attained. The wave amplitudes b(ξ, Y ) and a(ξ, Y ) are shown in figure 5 at
T =33.75. It is seen that b and a are of comparable magnitude and decay rapidly
along the vertical direction, reflecting the trapped nature of the response. Furthermore,
oblique dispersive waves are observed to form downstream of the obstacle, which is
centred at ξ = 0. As expected, there is no evidence of upstream influence in the wave
response.

We now consider a background stratification with q1 > 0. In the discussion following
(3.12), it was pointed out that under this condition, the linear hydrostatic flow
becomes resonant. Here, we examine the dispersive nonlinear response for the choice
of parameters ε = 0.1 and q1 = q2 = 4

√
2 at a supercritical flow speed, c1 = 1. The

temporal evolution of K, illustrated in figure 6, exhibits a strikingly different
behaviour from that in figure 4. Following an initial period of relatively little
variation, the rate of change of kinetic energy grows sharply at T ≈ 40, achieving
a rather large maximum value at T ≈ 62. It then drops off rapidly, and another cycle
appears to commence. The reason for the large variation in K can be understood by
examining the wave amplitudes, which are shown in figure 7 at T = 99.9. Focusing on
the amplitude b(ξ, Y ), we observe that solitary wave-like disturbances are generated
upstream of the obstacle. At the instant shown, the first solitary wave has detached
itself and propagated upstream, while the second is forming above the obstacle.
Downstream of the obstacle, there are two depressions, followed by a dispersive lee-
wavetrain with straight crests. The entire wave field is trapped close to the ground. The
trapped nature of the wave response is also evident in the behaviour of the amplitude
a(ξ, Y ). We note that although a(ξ, Y ) is confined close to Y = 0, the dependence
on the vertical coordinate differs significantly from the non-resonant case, shown in
figure 5. Further, the magnitude of a is considerably smaller than that of b, consistent
with the weakly nonlinear analysis presented in § 4. We remark, however, that the
unsteady response shown in figure 7 is not truly weakly nonlinear. The nonlinearity
of the wave disturbance can be measured in terms of the quantity η = 4(a2 + b2);
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Figure 7. The wave amplitudes (a) b(ξ, Y ) and (b) a(ξ, Y ) at T =99.9 for the flow
parameters in figure 6.

according to (2.3), η = 1 at points in the flow field where the streamlines become
vertical. The variation of η with ξ is shown in figure 8 on the lower boundary Y = 0
and along the lines Y =0.25, 0.5. The amplitude of the wave, as measured by η is
seen to be quite large in the vicinity of the two solitary waves. The largest amplitude,
corresponding to η ≈ 0.6 is attained at the peak of the first solitary wave on Y =0.
In accordance with the trapped nature of the wave, η drops off with Y , but its value
on Y = 0.5 is still significant.

Under the same flow conditions as those in figure 8, the values of η suggest that the
critical overturning value of unity would probably be attained during the transient
evolution of the response for a topography amplitude somewhat in excess of ε = 0.1.
As noted in Prasad et al. (1996), the kernels K11, . . . , K22 become singular as η → 1
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Figure 9. The rate of change of kinetic energy as a function of T for flow past topography of

amplitude ε = 0.3 and stratification parameters q1 = q2 = 4
√

2 at supercritical speed c1 = 1.6.

so nonlinear unsteady effects are expected to dominate the transient wave evolution
when this critical value is approached. In the analogous finite-depth problem, a
similar situation arises and, by integrating the governing finite-amplitude equation
with improved resolution, Clarke & Grimshaw (1999) demonstrated that the effect
of these unsteady nonlinear terms is to control the wave amplitude so as to keep
η < 1, thus allowing the computation to proceed. On the other hand, the long-wave
assumption (µ � 1) employed in the derivation of their evolution equation as well as
equations (4.1a, b) clearly breaks down when overturning is about to set in. In fact,
numerical solutions of the full Euler equations for uniformly stratified nonlinear flow
over topography (Rottman, Broutman & Grimshaw 1996) reveal that overturning
does occur under flow conditions for which the finite-amplitude long-wave theory
indicates that η → 1, although the precise time of wave breaking is underestimated by
the approximate theory. Accordingly, in the present computations, η → 1 is interpreted
as a sign that flow overturning will occur.

In order to investigate the possibility of overturning, we consider the flow past
topography of amplitude ε = 0.3 at a supercritical speed of c1 = 1.6, with q1 = q2 = 4

√
2

as before. The behaviour of K with T is shown in figure 9. The values of K are seen
to be significantly higher than those in figure 6, indicating that the magnitudes of a

and b are also larger. The evolution of K with T bears similarities to that in figure 6;
specifically, we observe that K begins to grow rapidly at T ≈ 12, corresponding to
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the initial stages of solitary wave formation. However, incipient overturning is found
at T = 20.8 before the solitary wave is released.

Next, we consider the flow past topography with ε = 0.5 at a subcritical flow speed,
c1 = −2 and q1 = −4

√
2, q2 = 4

√
2. It has been shown that at small values of the

topography amplitude (ε =0.1), the flow achieves a steady state, in accordance with
linear theory. At the larger forcing amplitude, the rate of change of kinetic energy K,
shown in figure 10, exhibits a decay following the initial transient; however, unlike the
small-amplitude case, the value of K remains finite during this period. At T ≈ 15, K
begins to increase, leading to rapid growth of the amplitudes a and b, which results
in wave breaking at T = 29.3. Thus, the presence of nonlinearity in this instance has
a destabilizing effect on a flow that would be predicted to achieve a steady state on
the basis of linear theory.

In the cases examined thus far, attention has been restricted to positive values of
q2. We now consider a subcritical flow with c1 = −0.8 past topography of amplitude
ε = 0.5, with stratification parameters q1 = 4

√
2 and q2 = −4

√
2. The rate of change of

kinetic energy is shown in figure 11. There is a slow growth of K initially that does
not appear to be associated with the startup transient. At large T , the rate of change
of kinetic energy approaches a finite value, indicating that the flow remains unsteady.
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in figure 11.

The wave amplitudes, b(ξ, Y ) and a(ξ, Y ) are illustrated in figure 12 at T =20. The
amplitude b features an upstream bore, followed by a trough that lengthens with
time. The flow downstream is dominated by a vertically trapped lee wave. Although
these phenomena are qualitatively similar to the weakly nonlinear results of § 4 for
q1 =

√
2, q2 = −

√
2 and subcritical flow speeds, it is important to note that the response

here is fully nonlinear. In fact, setting c1 to a value comparable to that in the weakly
nonlinear case shown in figure 2(a) results in wave breaking before the formation
of a bore. Note that while the downstream disturbance is straight-crested, the bore
itself has crests that are oblique to the ground, which is particularly evident in the
variation of a(ξ, Y ).
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of amplitude ε = 0.1 and stratification parameters q1 = q2 = 4
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2 at subcritical speed c1 = −0.4.

As a final example, we consider a subcritical flow with c1 = −0.4 and q1 = q2 = 4
√

2
past topography of amplitude ε = 0.1. This may be regarded as the analogue of the
weakly nonlinear flow examined in figure 3 of § 4. The rate of change of kinetic
energy K, shown in figure 13, exhibits a continuous increase until incipient breaking
is encountered at T = 15.7. The wave amplitudes a and b are shown in figure 14 just
prior to the occurrence of overturning at T = 15. A dispersive wavetrain is formed
downstream of the obstacle. We also observe that a steep trough in b is generated
immediately downstream of the obstacle, which is also associated with a peak in a.
As evidenced by the behaviour of K in figure 13, these extrema continue to grow
until the breaking criterion is achieved. It is notable that this occurs even for the
relatively small topography amplitude of ε =0.1, emphasizing that the presence of
vertical mean flow variations can have a major impact on the unsteady flow.

6. Discussion
This study has revisited the classical problem of stratified flow of large depth

over two-dimensional topography assuming that the Brunt–Väisälä frequency features
small periodic vertical variations, the background conditions being otherwise uniform.
Phillips (1968) pointed out that, as a result of their interaction with such non-
uniformities, internal waves in an unbounded stratified fluid can be trapped in the
vertical direction when their vertical wavelength is twice that of the underlying flow
variations, suggesting a waveguide-like behaviour. In the flow configuration studied
here, this interaction-trapping mechanism leads to a resonance phenomenon when
the background flow speed coincides with the long-wave speed of a free mode that
propagates along the horizontal direction but is trapped close to the ground. The
linear resonant response grows without bound and, as in other forced wave problems
where similar resonances arise (Akylas 1987), nonlinear effects come into play near
this critical flow speed. These effects were first studied in the weakly nonlinear regime
and it was found that the evolution of the trapped-mode amplitude is described by
a forced eKdV equation with cubic nonlinearity. This is analogous to the waveguide
behaviour observed in resonant stratified flows of finite depth (Grimshaw & Smyth
1968; Grimshaw & Yi 1991) and is a consequence of the trapping brought about by
the background flow variations, which confines the wave energy over a finite vertical
distance. Numerical solutions of the forced eKdV equation demonstrate the existence
of upstream influence in the form of solitary waves and bores.
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Under the flow conditions assumed here, it is also feasible, based on the amplitude-
evolution equations derived in KA, to examine the resonant flow response over
topography of finite amplitude near the hydrostatic limit, as long as overturning
has not occurred. These evolution equations were solved numerically for flow past
the algebraic mountain. In the absence of background flow non-uniformities and
assuming no upstream influence, the steady flow response is described by Long’s
(1953) model. For the algebraic mountain in the hydrostatic limit, Long’s steady
state first features vertical streamlines, signalling the onset of overturning, at the
critical topography amplitude ε =0.85. Moreover, the corresponding transient flow
does not exhibit upstream influence and there is no occurrence of breaking for
topography amplitudes below this critical value (Prasad et al. 1996). The present
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Figure 15. Balloon measurements taken in the lee of Mt. Washington illustrating the
(a) Brunt–Väisälä frequency, and (b) flow speed as a function of altitude.

study has revealed, however, that a small periodic non-uniformity in the Brunt–
Väisälä frequency can have a profound effect on the unsteady response. In particular,
it was shown that the upstream-propagating solitary waves and bores observed in
the weakly nonlinear case possess finite-amplitude counterparts and, further, that
breaking occurs over a broad range of flow conditions. These phenomena are present
even at topography amplitudes well below the critical value for overturning predicted
by Long’s model.

Although the form of the variable background stratification considered here is of
a rather special type, similar effects can be expected to occur for more general flow
non-uniformities as well. Specifically, it would suffice for the Brunt–Väisälä frequency
to feature nearly periodic variations and only within the vertical region into which
the trapped disturbances are confined. Moreover, as envisaged by Phillips (1968), it
is clear from (2.6) that non-uniformities of a similar form in the background velocity
profile would also lead to wave trapping.

The preceding analysis suggests that the effects of interaction trapping on stratified
flow over topography are quite robust and should therefore be detectable in field
or laboratory measurements. Although we know of no detailed measurements
pertaining specifically to the present theory, we display in figure 15 atmospheric
data obtained from balloon measurements performed by the Air Force Research
Laboratory (Hanscom Air Force Base) in the lee of Mount Washington on 31 May
2001 under relatively steady flow conditions. Focusing attention on figure 15(a),
we observe that the values of the Brunt–Väisälä frequency oscillate about a mean
which ranges roughly between 0.01 and 0.03 s−1, and the fluctuations have typical
wavelengths of the order of 1–2 km. Although the departures from the ‘mean’ are
quite large here, the resonant wind speed (3.7) predicted by the present theory based
on these data lies between 5 and 20 m s−1, which is within the range of the flow speed
profile shown in figure 15(b). We note, however, that detailed measurements in a
controlled setting are necessary to confirm the validity of the theoretical predictions
in a definitive manner.
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Appendix A. Kernel integration properties
Here, we demonstrate the reduction property of the kernels K11, . . . , K22 that was

used to obtain the evolution equations (4.1) in the reference frame (3.9). This property
is similar to that of the single kernel which appears in the analogous finite-depth
problem (Grimshaw & Yi 1991). Considering the expressions (2.5a, b) for K11 and
K12, we find upon integrating the second terms of the integrand by parts that

K11 =
1

8π

∫ 2π

0

dψ(yay
′
a − yaψy ′y ′

a − yayy ′
aψ ),

K12 =
1

8π

∫ 2π

0

dψ(yay
′
b − yaψy ′y ′

b − yayy ′
bψ ).

Making use of the relation y = y(ψ; a, b), we may write

yx |ψ = yaax + ybbx,

which yields the following simplification:∫ x

−∞
dx ′[K11a

′
x + K12b

′
x] =

1

8π

∫ 2π

0

dψ

∫ x

−∞
dx ′ [yay

′
x |ψ − 1

2
yaψ (y ′2)x |ψ − yya(y

′
ψ )x |ψ

]
.

Evaluating the integrals on the right-hand side of the above expression, we find that∫ x

−∞
dx ′[K11a

′
x + K12b

′
x] =

1

4π

∫ 2π

0

dψya(y − ψ),

=
1

π

∫ 2π

0

dψyψ cos y(a cos y − b sin y).

The final integration is readily accomplished and we find that∫ x

−∞
dx ′[K11a

′
x + K12b

′
x] = a.

In a similar manner, it may be shown that∫ x

−∞
dx ′[K21a

′
x + K22b

′
x] = b.

Appendix B. Numerical method
In this Appendix, a brief description of the numerical method used to solve

the evolution equations (4.1a, b) is given. The integral–differential nature of these
equations suggests the use of an explicit method. In the present study, the wave
amplitudes, a and b, are discretized using finite differences on a non-uniform grid
(ξi, Yj ). All spatial derivatives in the interior of the domain are evaluated using centred,
second-order stencils and the integral terms are evaluated using the trapezoidal rule.
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The solution is advanced in time using a scheme that is similar to the Lax–Wendroff
method. The discretized forms of (4.1a, b) may be written as

KuT = LuξY − Quξ + 1
2
α2uξξξ + ‘nlt’, (B 1)

where u is a column vector with entries ai,j and bi,j , ‘nlt’ stands for nonlinear terms
and the matrix operators K, L and Q are defined by

K=

[
Kc

11 + 1
2
K11ξ	ξ Kc

12 + 1
2
K12ξ	ξ

Kc
21 + 1

2
K21ξ	ξ Kc

22 + 1
2
K22ξ	ξ

]
(ij )

,

L=

[
0 −1

1 0

]
, Q= 1

4

[
−4c − q2 q1

q1 −4c + q2

]
.

Here, 	ξ is the grid spacing along the ξ -direction and is, in general, not uniform. It
may then be shown from (B 1) that

KuT T = (LK−1L)uξξYY +(QK−1Q)uξξ + 1
4
α4K−1uξξξξξξ

− (LK−1Q + QK−1L)uξξY + 1
2
α2(LK−1 + K−1L)uξξξξY

− 1
2
α2(QK−1 +K−1Q)uξξξξ + ‘nlt’. (B 2)

The wave amplitudes are advanced from the nth to the (n+1)th time step according
to

u(n+1) = u(n) + u(n)
T 	T + 1

2
u(n)

T T 	T 2, (B 3)

where 	T is the time step. Equation (B 3), together with (B 1) and (B 2) represent the
Lax–Wendroff algorithm, which is conditionally stable and second-order accurate in
both space and time. However, direct implementation of this method would prove to
be computationally expensive owing to the presence of the nonlinear terms in (B2).
Furthermore, these terms are not required to maintain numerical stability, which
is ensured by the linear terms. We therefore neglect the nonlinear terms in (B 2).
Moreover, numerical experiments show that retention of the first three terms on the
right-hand side of (B 2) is sufficient to ensure stability and therefore the remaining
linear terms are excluded as well.

These modifications minimize the numerical damping, but result in a scheme with
first-order rather than second-order temporal accuracy. Upon carrying out a von
Neumann analysis of the scheme (B 3) applied to the linearized governing equations,
it is found to be stable provided

	T � O(	ξ	Y ), O(	ξ 3),

where 	Y is the grid spacing along the Y -direction. In practice, we generally choose
	Y ∼ 	ξ , so the stability requirement is 	T � O(	ξ 3). Hence, a fine-grid resolution
ensures that the time step 	T is small and the first-order temporal accuracy of the
scheme is not a significant issue. The typical values of 	ξ and 	Y employed in the
present simulations were in the ranges 0.2–0.3 and 0.05–0.1, respectively. Furthermore,
care was taken to ensure that changes in the grid spacing were sufficiently smooth so
as to avoid spurious numerical reflections.

The values of the kernels required to evaluate the right-hand side of (B 3) are
determined explicitly. In order to reduce the computational cost associated with
determining the kernels, the procedure of Prasad et al. (1996) is adopted. Specifically,
the linear limits K11 =K22 = 1, K12 = K21 = 0 are used for values of a2 + b2 + a′2 + b′2
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less than a lower threshold value of 0.005. When a2 + b2 + a′2 + b′2 exceeds an upper
threshold of 0.05, the integrals in (2.5a–d) are evaluated using the trapezoidal rule;
in carrying out this procedure, the expression (2.1) is inverted by Newton iteration
to obtain y = y(ψ; a, b). For intermediate values of the quantity a2 + b2 + a′2 + b′2,
small-amplitude expansions of the kernels, correct to eighth order in a and b, are
used.

The numerical method described by (B 1)–(B 3) is applied at the interior points of
the domain. At the far-field boundaries of the computational domain, ξ±∞ and Y∞,
we set the wave amplitudes and their spatial derivatives to zero. Spurious reflections
are eliminated by monitoring the disturbance amplitudes close to the boundaries and
adding more points when they exceed a small critical value. On the boundary Y =0
(j = 0), we obtain upon differentiating (2.7) with respect to T

aT = bT tan εf + εfT

[
b sec2 εf − 1

2
sec εf (1 + εf tan εf )

]
. (B 4)

Substituting the expression (B 4) for aT into the discretized version of (4.1b), the
values of bT on the boundary points may be determined. Similarly, bT T is determined
using an expression analogous to the second of (B 3). The amplitude a(ξ, Y = 0) is
then computed at the new time step using the boundary condition (2.7).

At each time step, the computation is commenced on j =1, the first point away
from the boundary Y =0. Using the linearized versions of (4.1a, b), the values of a and
b at i =1 (the first interior point from the left-hand boundary) are first determined,
and the entire (ξ , Y )-plane is covered by consecutive ξ -sweeps. The values on the lower
boundary j = 0 are then computed using the procedure described earlier. Although
this procedure works well for small topography amplitudes, slowly growing grid-scale
oscillations were found to develop at larger amplitudes. As in Prasad et al. (1996),
these oscillations were suppressed by using the 5-point smoothing formula of Shapiro
(1975):

fj = 1
16

(−fj−2 + 4fj−1 + 10fj + 4fj+1 − fj+2).

It was only necessary to apply this formula infrequently; moreover, the results were
not dependent on the precise frequency with which the smoothing was applied.
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